
AS-2342
M.C.A.1st Semester, Examination-2013

Paper – fourth

Subject-Data structure with algorithm

Time: Three Hours] [Maximum Marks: 60

Note: attempt all questions. Q. no. 1 is compulsory. Answer any four from the remaining.

Section A

Attempts all the questions. All carry equal marks (10×2=20)

1.I In a binary tree with 20 nodes, how many null branches it will contain?

Ans. 21
1.II The minimum spanning tree of a graph give the shortest distance between any 2 specified nodes.

A. True. B. False. C. Depend on the nodes. D. None of these.

Ans. B. False
1.III The sort which inserts each elements A(K) into proper position in the previously sorted sub array

A(1), ..., A(K–1)
(A) Insertion sort (B) Radix sort (C) Merge sort (D) Bubble sort

Ans. A. Insertion sort
1.IV Level of any node of a tree is

(A) Height of its left subtree minus height of its right subtree.
(B) Height of its right subtree minus height of its left subtree.
(C) Its distance from the root.
(D) None of these.

Ans. C. Its distance from the root.
1.V The result of evaluating the following postfix expression is …..

 5, 7, 9, *, +, 4, 9, 3, /, +, -

Ans. 61
1.VI A full binary tree with 'n' non-leaf nodes contains……..total nodes (leaf+non leaf)

Ans. 2n+1

1.VII In _________ tree the difference between the height of the left sub tree and height of
right sub tree, for each node, is not more than one

Ans. AVL

1.VIII The number of comparisons required to sort 5 numbers in ascending order using bubble
sort is.
(A) 7 (B) 6 (C) 10 (D) 5

Ans. C. 10
1.IX In a binary tree, the number of terminal or leaf nodes is 10. The number of nodes with two

children is….

Ans. 9
1.X The complexity of Binary search algorithm is….

Ans. O(Log n)

Section B

Attempt any four questions out of seven. All carry equal marks (4 ×10=40)

2. Convert the given graph with weighted edges to minimal spanning tree.

Ans. To find the minimum spanning tree(MST) there are two method

i. By kruskal algrithm and

ii. By prim’s algorithm.

Here we can apply any method as there is no restriction. If we apply either of the algorithm step by

step, the MST corresponding to above graph will be given below. The sum of weights of all edges is

1520

MST corresponding the given graph.

3. How does selection sort work and write the algorithm with example?

Ans. SELECTION SORT
Selection sort algorithm finds the smallest element of the array and interchanges it with the element in the first

position of the array. Then it finds the second smallest element from the remaining elements in the array and places

it in the second position of the array and so on. Let A be a linear array of ‘n’ numbers, A [1], A [2], A [3],...... A [n].

Step 1: Find the smallest element in the array of n numbers A[1], A[2], A[n]. Let

LOC is the location of the smallest number in the array. Then interchange A[LOC] and A[1] by swap = A[LOC];

A[LOC] = A[1]; A[1] = Swap.

Step 2: Find the second smallest number in the sub list of n – 1 elements A [2] A [3] A [n – 1] (first element is

already sorted). Now we concentrate on the rest of the elements in the array. Again A [LOC] is the smallest element

in the remaining array and LOC the corresponding location then interchange A [LOC] and A [2].Now A [1] and A

[2] is sorted, since A [1] less than or equal to A [2].

Step 3: Repeat the process by reducing one element each from the array

Step n – 1: Find the n – 1 smallest number in the sub array of 2 elements (i.e., A(n–1), A (n)). Consider A [LOC] is

the smallest element and LOC is its corresponding position. Then interchange A [LOC] and A(n – 1). Now the array

A [1], A [2], A [3], A [4],………..A [n] will be a sorted array.

Following figure is generated during the iterations of the algorithm to sort 5 numbers 42, 33, 23, 74, 44 :

ALGORITHM
Let A be a linear array of n numbers A [1], A [2], A [3], ……… A [k], A [k+1], …….. A [n]. Swap be a temporary

variable for swapping (or interchanging) the position of the numbers. Min is the variable to store smallest number

and Loc is the location of the smallest element.

1. Input n numbers of an array A

2. Initialize i = 0 and repeat through step5 if (i < n – 1)

(a) min = a[i]

(b) loc = i

3. Initialize j = i + 1 and repeat through step 4 if (j < n – 1)

4. if (a[j] < min)

(a) min = a[j]

(b) loc = j

5. if (loc ! = i)

(a) swap = a[i]

(b) a[i] = a[loc]

(c) a[loc] = swap

6. display “the sorted numbers of array A”

TIME COMPLEXITY
Time complexity of a selection sort is calculated in terms of the number of comparisons f (n). In the first pass it

makes n – 1 comparisons; the second pass makes n – 2 comparisons and so on. The outer for loop iterates for (n - 1)

times. But the inner loop iterates for n*(n – 1) times to complete the sorting.

f (n) = (n – 1) + (n – 2) + + 2 + 1

= (n(n – 1))/2

= O(n2).

Example.

Sort: 20,35,40,100,3,10,15

4. Describe dijkstra’s algorithm with example
Ans. A path from a source vertex a to b is said to be shortest path if there is no other path from a to b with

lower weights. There are many instances, to find the shortest path for traveling from one place to another.

That is to find which route can reach as quick as possible or a route for which the traveling cost in

minimum. Dijkstra's Algorithm is used find shortest path.

Dijkstra's algorithm solves the single-source shortest-path problem when all edges have non-negative

weights. It is a greedy algorithm and similar to Prim's algorithm. Algorithm starts at the source vertex, s, it

grows a tree, T, that ultimately spans all vertices reachable from S. Vertices are added to T in order of

distance i.e., first S, then the vertex closest to S, then the next closest, and so on. Following implementation

assumes that graph G is represented by adjacency lists.

DIJKSTRA (G, w, s)

1. INITIALIZE SINGLE-SOURCE (G, s)

2. S ← { } // S will ultimately contains vertices of final shortest-path weights from s

3. Initialize priority queue Q i.e., Q ← V[G]

4. while priority queue Q is not empty do

5. u ← EXTRACT_MIN(Q) // Pull out new vertex

6. S ← S È {u} // Perform relaxation for each vertex v adjacent to u

7. for each vertex v in Adj[u] do

8. Relax (u, v, w)

Example.
Step1. Given initial graph G=(V, E). All nodes nodes have infinite cost except
the source node, s, which has 0 cost.

Step 2. First we choose the node, which is closest to the source node, s. We
initialize d[s] to 0. Add it to S. Relax all nodes adjacent to source, s. Update
predecessor (see red arrow in diagram below) for all nodes updated.

Step 3. Choose the closest node, x. Relax all nodes adjacent to node x. Update
predecessors for nodes u, v and y (again notice red arrows in diagram below).

Step 4. Now, node y is the closest node, so add it to S. Relax node v and adjust
its predecessor (red arrows remember!).

Step 5. Now we have node u that is closest. Choose this node and adjust its neighbor node v.

Step 6. Finally, add node v. The predecessor list now defines the shortest path from each node to

the source node, s.

5. Explain dequeue with example.

Ans. A deque is a homogeneous list in which elements can be added or inserted (called push operation)

and deleted or removed from both the ends (which is called pop operation). ie; we can add a new

element at the rear or front end and also we can remove an element from both front and rear end. Hence

it is called Double Ended Queue.

There are two types of deque depending upon the restriction to perform insertion or deletion operations at the two

ends. They are

1. Input restricted deque

2. Output restricted deque

An input restricted deque is a deque, which allows insertion at only 1 end, rear end, but allows deletion at both ends,

rear and front end of the lists.

An output-restricted deque is a deque, which allows deletion at only one end, front end, but allows insertion at both

ends, rear and front ends, of the lists.

The possible operation performed on deque is

1. Add an element at the rear end

2. Add an element at the front end

3. Delete an element from the front end

4. Delete an element from the rear end

Only 1st, 3rd and 4th operations are performed by input-restricted deque and 1st, 2nd and 3rd operations are performed by

output-restricted deque.

ALGORITHMS FOR INSERTING AN ELEMENT
Let Q be the array of MAX elements. front (or left) and rear (or right) are two array index (pointers), where the

addition and deletion of elements occurred. Let DATA be the element to be inserted. Before inserting any element to

the queue left and right pointer will point to the – 1.

INSERT AN ELEMENT AT THE RIGHT SIDE or REAR END or RIGHT MOST OF THE DE-QUEUE
1. Input the DATA to be inserted

2. If ((left == 0 && right == MAX–1) || (left == right + 1))

(a) Display “Queue Overflow”

(b) Exit

3. If (left == –1)

(a) left = 0

(b) right = 0

4. Else

(a) if (right == MAX –1)

(i) left = 0

(b) else

(i) right = right+1

5. Q[right] = DATA

6. Exit

Also write any suitable example

INSERT AN ELEMENT AT THE LEFT SIDE or FRONT END or LEFT MOST OF THE DE-QUEUE
1. Input the DATA to be inserted

2. If ((left == 0 && right == MAX–1) || (left == right+1))

(a) Display “Queue Overflow”

(b) Exit

THE QUEUES 79
3. If (left == – 1)

(a) Left = 0

(b) Right = 0

4. Else

(a) if (left == 0)

(i) left = MAX – 1

(b) else

(i) left = left – 1

5. Q[left] = DATA

6. Exit

Also write any suitable example

ALGORITHMS FOR DELETING AN ELEMENT
Let Q be the array of MAX elements. front (or left) and rear (or right) are two array index (pointers), where the

addition and deletion of elements occurred. DATA will contain the element just deleted.

DELETE AN ELEMENT FROM THE RIGHT SIDE or REAR END or RIGHT MOST OF THE DE-QUEUE
1. If (left == – 1)

(a) Display “Queue Underflow”

(b) Exit

2. DATA = Q [right]

3. If (left == right)

(a) left = – 1

(b) right = – 1

4. Else

(a) if(right == 0)

(i) right = MAX-1

(b) else

(i) right = right-1

5. Exit

Also write any suitable example

DELETE AN ELEMENT FROM THE LEFT SIDE or FRONT END or LEFT MOST OF THE DE-QUEUE
1. If (left == – 1)

(a) Display “Queue Underflow”

(b) Exit

2. DATA = Q [left]

3. If(left == right)

(a) left = – 1

(b) right = – 1

4. Else

(a) if (left == MAX-1)

(i) left = 0

(b) Else

(i) left = left +1

5. Exit

Also write any suitable example

6. Describe priority queue with example.

Ans.

 Priority Queue is a queue where each element is assigned a priority. In priority queue, the elements are deleted and

processed by following rules.

1. An element of higher priority is processed before any element of lower priority.

2. Two elements with the same priority are processed according to the order in which they were inserted to the

queue.

For example, Consider a manager who is in a process of checking and approving files in a first come first serve

basis. In between, if any urgent file (with a high priority) comes, he will process the urgent file next and continue

with the other low urgent files.

Fig. 1 Priority queue using array

Above fig. 1 gives a pictorial representation of priority queue using arrays after adding 5 elements (10,14,12,60,13)

with its corresponding priorities (9,10,17,30,46). Here the priorities of the data(s) are in ascending order. Always we

may not be pushing the data in an ascending order. From the mixed priority list it is difficult to find the highest

priority element if the priority queue is implemented using arrays. Moreover, the implementation of priority queue

using array will yield n comparisons (in liner search), so the time complexity is O(n), which is much higher than the

other queue (ie; other queues takes only O(1)) for inserting an element. So it is always better to implement the

priority queue using linked list - where a node can be inserted at anywhere in the list - which is discussed in this

section.

A node in the priority queue will contain DATA, PRIORITY and NEXT field. DATA field will store the actual

information; PRIORITY field will store its corresponding priority of the DATA and NEXT will store the address of

the next node. Fig. 2 shows the linked list representation of the node when a DATA (i.e., 12) and PRIORITY (i.e.,

17) is inserted in a priority queue

Fig. 2 Linked list representation of priority queue.

When an element is inserted into the priority queue, it will check the priority of the element with the element(s)

present in the linked list to find the suitable position to insert. The node will be inserted in such a way that the data

in the priority field(s) is in ascending order. We do not use rear pointer when it is implemented using linked list,

because the new nodes are not always inserted at the rear end. Following figures will illustrate the push and pop

operation of priority queue using linked list.

Fig. 3 push(DATA =10, PRIORITY = 9)

Fig. 4. Push (DATA = 60, PRIORITY = 30)

Fig. 5 Push (DATA = 13, PRIORITY = 46)

Fig. 6 Push(DATA = 14, PRIORITY = 10)

Fig. 7. x = Pop() (i.e., 10)

Fig. 8. x = Pop() (i.e., 14)

7. Write the algorithm of postfix evaluation with example.

Ans. Following algorithm finds the RESULT of an arithmetic expression P written in postfix notation. The

following algorithm, which uses a STACK to hold operands, evaluates P.

Algorithm
1. Scan P from left to right and repeat Steps 2 and 3 for each element of P until the P is finished.

2. If an operand is encountered, put it on STACK.

3. If an operator is encountered, then:

(a) Remove the two top elements of STACK, where A is the top element and B is the next-to-top element.

(b) Evaluate B operator A.

(c) Place the result on to the STACK.

4. Result equal to the top element on STACK.

5. Exit.

Example

 Evaluate: 2 3 * 4 + (for infix 2 * 3 + 4)

 Steps to evaluate 2 3 * 4 +:

1. Read 2, push 2

2. Read 3, push 3

3. Read *, pop 3, pop 2, mult. 2 * 3, push 6

4. Read 4, push 4

5. Read +, pop 4, pop 6, add 6 + 4, push 10

So expression is over and in this way the result is 10

8. Explain the queue and circular queue with example and give the difference between them.

Queue
A queue is logically a first in first out (FIFO or first come first serve) linear data structure. The concept of queue can

be understood by our real life problems. For example a customer come and join in a queue to take the train ticket at

the end (rear) and the ticket is issued from the front end of queue. That is, the customer who arrived first will receive

the ticket first. It means the customers are serviced in the order in which they arrive at the service centre. It is a

homogeneous collection of elements in which new elements are added at one end called rear, and the existing

elements are deleted from other end called front.

The basic operations that can be performed on queue are

1. Insert (or add) an element to the queue (push)

2. Delete (or remove) an element from a queue (pop)

Push operation will insert (or add) an element to queue, at the rear end, by incrementing the array index. Pop

operation will delete (or remove) from the front end by decrementing the array index and will assign the deleted

value to a variable. Total number of elements present in the queue is front-rear+1, when implemented using arrays.

Following figure will illustrate the basic operations on queue.

Queue can be implemented in two ways:

1. Using arrays (static)

2. Using pointers (dynamic)

Implementation of queue using pointers will be discussed in chapter 5. Let us discuss underflow and overflow

conditions when a queue is implemented using arrays.

If we try to pop (or delete or remove) an element from queue when it is empty, underflow occurs. It is not possible

to delete (or take out) any element when there is no element in the queue.

Suppose maximum size of the queue (when it is implemented using arrays) is 50. If we try to push (or insert or add)

an element to queue, overflow occurs. When queue is full it is naturally not possible to insert any more elements

ALGORITHM FOR QUEUE OPERATIONS
Let Q be the array of some specified size say SIZE

INSERTING AN ELEMENT INTO THE QUEUE
1. Initialize front=0 rear = –1

2. Input the value to be inserted and assign to variable “data”

3. If (rear >= SIZE)

(a) Display “Queue overflow”

(b) Exit

4. Else

(a) Rear = rear +1

5. Q[rear] = data

6. Exit

DELETING AN ELEMENT FROM QUEUE
1. If (rear< front)

(a) Front = 0, rear = –1

(b) Display “The queue is empty”

(c) Exit

68 PRINCIPLES OF DATA STRUCTURES USING C AND C++

2. Else

(a) Data = Q[front]

3. Front = front +1

4. Exit

Circular queue

Ans. In circular queues the elements Q[0],Q[1],Q[2] Q[n – 1] is represented in a circular fashion with

Q[1] following Q[n]. A circular queue is one in which the insertion of a new element is done at the very

first location of the queue if the last location at the queue is full.

Suppose Q is a queue array of 6 elements. Push and pop operation can be performed on circular. The

following figures will illustrate the same.

At any time the position of the element to be inserted will be calculated by the relation Rear = (Rear + 1) % SIZE

After deleting an element from circular queue the position of the front end is calculated by the relation Front= (Front

+ 1) % SIZE

After locating the position of the new element to be inserted, rear, compare it with front. If (rear = front), the queue

is full and cannot be inserted anymore

ALGORITHMS
Let Q be the array of some specified size say SIZE. FRONT and REAR are two pointers where the elements are

deleted and inserted at two ends of the circular queue. DATA is the element to be inserted.

Inserting an element to circular Queue

1. Initialize FRONT = – 1; REAR = 1

2. REAR = (REAR + 1) % SIZE

3. If (FRONT is equal to REAR)

(a) Display “Queue is full”

(b) Exit

4. Else

(a) Input the value to be inserted and assign to variable “DATA”

5. If (FRONT is equal to – 1)

(a) FRONT = 0

(b) REAR = 0

6. Q[REAR] = DATA

7. Repeat steps 2 to 5 if we want to insert more elements

8. Exit

Deleting an element from a circular queue
1. If (FRONT is equal to – 1)

(a) Display “Queue is empty”

(b) Exit

2. Else

(a) DATA = Q[FRONT]

3. If (REAR is equal to FRONT)

(a) FRONT = –1

(b) REAR = –1

4. Else

(a) FRONT = (FRONT +1) % SIZE

5. Repeat the steps 1, 2 and 3 if we want to delete more elements

6. Exit

Diffrence

In Linear queue the last node address field contains NULL value but in circular queue the last node
address points to first node.

